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We propose a method for computing the temperature dependence of the heat capacity in complex molecular
systems. The proposed scheme is based on the use of the Langevin equation with low-frequency color noise.
We obtain the temperature dependence of the correlation time of random noises, which enables us to model the
partial thermalization of high-frequency vibrations. This purely quantum effect is responsible for the decreas-
ing behavior of the specific heat ¢(7) in the low-temperature regime. By applying the method to carbon
nanotubes and polyethylene molecules, we show that the consideration of the color noise in the Langevin

equation allows us to reproduce the temperature evolution of the specific heat with a good accuracy.
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The pronounced temperature dependence of the specific
heat ¢(7) in molecular systems is a pure quantum effect. It is
well known that in the absence of any critical point, the
increase of the temperature is accompanied by a smooth rise
of the specific heat ¢(T), while by decreasing the tempera-
ture, ¢(7) tends to zero. The first explanation for this quan-
tum phenomenon was given by Einstein a century ago [1].

From the point of view of the classical physics, the de-
creasing tendency of the specific heat looks like an effect of
“partial freezing” of high-frequency vibrational modes, while
low-frequency vibrations would be fully excited. This in-
complete picture is of course due to the inadequacy of the
classical physics to provide a self-consistent explanation for
this effect. In fact, the use of the usual Langevin equation
with white noise leads to a uniform thermalization of all
modes, and the specific heat is practically insensitive to the
temperature (in classical physics, any temperature depen-
dence of the thermal capacity results from nonlinearity ef-
fects). On the other hand, it is possible to mimic the “partial
thermalization” effect in the framework of the Langevin de-
scription if one considers, instead of a white noise, a low-
frequency color noise with a temperature-dependent fre-
quency spectrum. To this end, it is enough to introduce a
random noise with a finite correlation time #.>0 during
which the noise “remembers” its last realization. In this
study, we obtain the temperature dependence of this correla-
tion time, which allows a correct modeling of the “partial
thermalization” of vibrations in the system. A thorough dis-
cussion about the relation between the white noise and the
correlated noise can be found in [2,3].

The paper is organized as follows. We consider in Sec. I a
harmonic oscillator and investigate its dynamics described
by the Langevin equation with color noise. We obtain the
temperature dependence of the correlation time of random
noises, which enables us to efficiently model the “partial
thermalization” of high-frequency vibrations. We next evalu-
ate in Sec. II the effect of nonlinearities on the accuracy of
our computational method, and we propose a general scheme
to compute the heat capacity for many-body systems using a
color noise. Sections III and IV are devoted to the applica-
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tion of the proposed scheme to a Hamiltonian carbon nano-
tube model and a polyethylene macromolecule, respectively.
It is shown in these sections that the temperature evolution of
the specific heat computed with the Langevin equation with
color noise agrees well with the result obtained from a direct
quantum-mechanical calculation.

I. THE LANGEVIN EQUATION

The thermalization of the mode of frequency () is de-
scribed by the Langevin equation

i+ Q%u+Ti= &0/, (1)

where u is the coordinate of the vibration; damping I'=1/1,,
and 7, is the relaxation time; w is the reduced mass of the
mode; &(r) is a normally distributed random force that de-
scribes the interaction of the mode with the thermal bath of
temperature 7 and the autocorrelation function

(E0&(') =2ulkpTe(r—1')

[the dimensionless function ¢(f) is normalized as [ o(¢)dt
=1], where kg is the Boltzmann constant.

At thermal equilibrium, the averaged energy of thermal
vibrations is defined by the relation

1 T
E=1lim —f E(zjz + Q%) dt
77— T 0 2

= f w(? + Q)| H(w)*F(o)do, (2)
0

where H(w)=[u(Q?-w’+iwl)]" is the transmission func-
tion and F(w) is the Fourier transform of the autocorrelation
function of the random force,
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Flo) = %T J (§(1)&(0))exp{- iwt}dt

ulkyT f -

—00

o(t)exp{- iwt}dr. (3)

Thus, E=K+ P, where the averaged kinetic energy is defined
by the relation

K= lim - j "L idi=2k1T f 7 __o Ao
= - — =
TI~I>I; T 0 2/1/” B 0 (Qz - w2)2 + w2F2

(4)

and the averaged potential energy is given by

P=lim - f L 0%dr = 21T f 7 __ e
= - — = S
Tglolo 7Jy 2'“ " B 0 (0% - 0?)? + T2

(5)

where F(w) is the Fourier transform of the dimensionless
autocorrelation function ¢(z),

+00

Flw) = %r o(t)exp{- iwt}dr.

For a S-correlated random force (the case of the white
noise), ¢(#)=48(t) and F(w)=1/2. The integrals (4) and (5)
can be easily calculated by a contour integration. The energy
E=K=kgT/2 at Q=0 and E=K+P=kzT, K=P=kzT/2 for
frequency >0.

For an exponentially correlated random force (the case of
low-frequency color noise), ¢(f)= %)\ exp—|\f| and Flw)
=\?/2m(w?+\?), where A\=1/¢, and ¢, is the correlation time
of the random force. In this case, the integrals (4) and (5) can
also be calculated by a contour integration. The averaged
kinetic energy K=kgTfx(Q,I',\)/2 and the averaged poten-
tial energy P=kgTfp({),I',N\)/2 with fx and fp defined by

F(Q.TN) = (N2 + 2T+ Q?), (6)

N(QZ+ N2 =T2) + \['Q?
(QZ + )\2)2 _ 1"2)\2

fp(Q.IN) = (7)

Let us note at this point that in the limit {1 —0, one gets
fx=N2/(N2+\T), fp=1. In the present work, we kept the
numerical value of the damping I" small enough. In this case
(the limit I' — 0), formulas (6) and (7) take the simple form
fe=fr=N*/(N*+Q3).

In the case of an harmonic oscillator, the Langevin equa-
tion with white noise describes thermal vibrations of har-
monic modes in the classical approximation, where the mean
energy obeys E=kgT. If one considers instead a quantum
harmonic oscillator H=AQ(B*B +%), where 7 is the Planck
constant, and B* and B represent creation and annihilation
operators, the mean energy of thermal vibrations is given by
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hQ 1
+ —hQ). (8)

EQ,T=—""""—"—
@.7) exp(hQ/kgT) -1 2

The heat capacity of the oscillator is defined by c({,7)
=dE(Q,T)/dT=kgF(X),T), where the Einstein function be-
haves according to

exp(AQkgT)
[exp(hQ/kgT) — 11>

2

F E(Q, T) = <@>
kgT
For T— o, the Einstein function Fg({),T)— 1, while in the
limit T— 0, we get Fg(€,T) — 0. Consequently, at high tem-
peratures, the specific heat behaves as ¢({),T)=kp, and at
low temperatures one has c({),T) = 0. For this reason, in the
low-temperature regime defined by T<Tp=%Q/kp, vibra-
tions of the quantum oscillator are “partially frozen.” Conse-
quently, a classical description of thermal vibrations is valid
exclusively in the high-temperature regime 7> T, where the
Einstein temperature Ty is defined by Fy(Q,Tg)=e/(e—1)?
=0.920 673 5.
If we drop the energy of vacuum vibrations #(}/2, the

thermalization of the quantum oscillator can be characterized
by the function

hQ/ksT

GQ,7)=[EQ,T)-aQ2)kyT=—"——""—.
@.1)=[E@.7) Vs exp(hQ/kgT) — 1

In the limit 7— 0, the thermalization coefficient G(€},T)
—0, while at T=Ty the function G(Q,Tg)=1/(e—1)
=0.581976 7, and in the limit 7— o, we have G(Q),T)— 1.
Hence for temperatures 7>>0, vibrations with frequency ()
>QOp(T)=kgT/h will be “partly frozen.” We can thus con-
clude that it is incorrect to model thermal fluctuations of
these modes using the Langevin equation with white noise.

As we stated at the beginning of this paper, the partial
thermalization of high-frequency vibrations and the total
thermalization of low-frequency modes can be realized if one
uses a Langevin equation with color noise, which consists of
low-frequency components of the white noise. But it is nec-
essary to consider in this case the temperature dependence of
the noise correlation functions. For an exponentially corre-
lated random noise, this dependence can be deduced from
the relation

G(Qu(T),T) = [fx(Qe(T),I',N) + fp(Qe(T), T, M) /2.
In the limit ['<< Qg(T)=kzT/#, using Egs. (6) and (7), the
last equation can be expressed in the simple form
\? 1
N2+ (kgT/h)?  e—1"

)

Equation (9) yields the following linear temperature depen-
dence of the correlation coefficient:

N=1/t,=kgTIhve-2. (10)

It follows from Eq. (10) that the description of the partial
thermalization of high-frequency vibrations with the use of
the Langevin equation (1) becomes possible if we introduce
a correlation time ¢, that is inversely proportional to the tem-
perature 7 of the thermal bath, i.e.,
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FIG. 1. (Color online) Temperature dependence of the heat ca-
pacity of the quantum harmonic (curve 1) and anharmonic oscillator
(curve 3), classical harmonic (curve 2), and anharmonic oscillator
(curve 4) obtained from the Langevin equation with color noise ()
is the frequency of the oscillator and the anharmonicity parameter is
chosen as B=0.1). Open symboles denote the heat capacity com-
puted according to the spectral density equation (38).

tc = h\“"e - Z/kBT

(11)

The time correlated color noise can be inserted in the
Langevin description if one replaces the Langevin equation
(1) by the system of two equations,

i=—Q%-Tu+ 1), (12)

E=[n() - &)Y,

where 7(r) stands for the white noise generator, normalized
according to

(13)

() n(t")) =2ulkgTS(t~1'),

and ¢, is the correlation time whose temperature dependence
is determined by Eq. (11).

Figure 1 compares the specific heat of a quantum har-
monic oscillator and a classical oscillator whose dynamics is
described by Langevin equations with color noise (12) and
(13). It is clear that the introduction of the color noise does
not allow us to reproduce the temperature dependence of the
quantum oscillator exactly. This is mainly due to the well
known inadequacy of a classical description to describe zero
vibrations (ground-state fluctuations). The figure neverthe-
less shows that the use of the color noise yields a qualita-
tively correct behavior of the heat capacity, that is, in the
limit 7— 0 the specific heat ¢ —0, and for T— one has
c¢— kg (with the increase of the temperature, the correlation
time tends to zero and the color noise becomes a white
noise). Most importantly, we notice that there is a good
agreement between the exact quantum result and the modi-
fied Langevin description at low temperatures 7<<Ty where
quantum effects dominate.

We have shown that by using the Langevin equation with
color noise, one can obtain a qualitatively correct picture for
the temperature evolution of the specific heat in the case of a
harmonic oscillator. The presence of nonlinearities in the
system will be considered in the next section.
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II. THE EFFICIENCY OF THE PROPOSED SCHEME IN
THE PRESENCE OF NONLINEARITIES

As is well known, anharmonicities are always present in
physical systems, and the validity of the harmonic approxi-
mation, which consists in representing the building blocks of
a condensed system by linear oscillators, is usually restricted
to very low energy regimes. The anharmonic intermolecular
forces may result either from the nonlinearity of the indi-
vidual oscillators or from their nonlinear mutual interaction.
The natural question arises whether the Langevin equation
with color noise can be used in the presence of nonlinearities
in the system. As a first attempt to answer this question, let
us consider a nonlinear oscillator whose dimensionless
Hamiltonian is given by

1, 1,1
H=—i"+—u* + — Bu’.

2 2 4 (14)

The corresponding Langevin equation with color noise can
be written in the form

fi=—u—Bu’—Tu+ &),

E=[n() - &0,

(p(O)n(t"))=2I'Té(t-1"), (15)

where T is the dimensionless temperature, the friction coef-
ficient I'=0.01, and the correlation time t,= Ve=2/T.

The numerical integration of the set of equations of mo-
tion (15) yields the mean energy E=(H) of the anharmonic
oscillator as a function of 7. Then the specific heat is com-
puted from c(T)=dE/dT.

In order to check the accuracy of the modified Langevin
equation, we obtained equally the specific heat of this oscil-
lator by computing numerically the exact eigenvalues E, of
the quartic Hamiltonian (14). The diagonalization of the
Hamiltonian matrix was performed in the basis of the har-
monic oscillator. The obtained eigenvalues were then used to
find the partition function and the specific heat from the
well-known relations

Z(1)=2X e,

F(I)=-TIn(2),

d°F

c(T)=- Tﬁ'

(16)

We compare in Fig. 1 the result of the numerical simula-
tion to that obtained from the quantum statistical calculation
(curve 3 and 4) for B=0.1. We notice that the nonlinearity
effects are indistinguishable within the accuracy of the pro-
posed method.

In order to examine the effect of nonlinearities present in
mutual interactions between vibrational modes, let us con-
sider now the case of two linear oscillators with a dimension-
less Hamiltonian
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FIG. 2. (Color online) Temperature dependence of the heat ca-
pacity for the system of two coupled linear oscillators (with fre-
quencies ®;=1, w,=10) obtained from a direct quantum-
mechanical calculation (curves 1,3) and the Langevin equation with
color noise (curves 2,4). Solid lines correspond to decoupled oscil-
lators (B8=0) and dashed lines to a coupling S=1. Open symbols
denote the heat capacity computed according to the spectral density
equation (38).

1
H= (u1+u2+w]u1+w2u2)+ B(ul—uz) (17)

where the variable u; describes the dynamics of the ith oscil-
lator (i=1,2), w; is the frequency of the same mode, and the
parameter [ sets the strength of the nonlinear interaction
between the two oscillators. For this two-body Hamiltonian,
the system of Langevin equations with color noise takes the
form

Uy ==y + Bluy—1,)> = Tuy + &(1),

Bluy - M1)3 - F“.z +&(1),

I/.l.2 =— Wy —
&=[m@- &0,

é2 =[ (1) - &2, (18)

where 7,(t) stands for the random function that generates
white noise with normalization conditions

() mt")) =2I'TS(z - 1'), (m@&)my(t'))=0.

(T is dimensionless temperature, the dissipation coefficient is
chosen as I'=0.01, and the correlation time is given by z,
=ve— 2/T)

It is also possible for this two-body system to obtain the
temperature dependence of the specific heat from a purely
quantum-mechanical calculation, that is, by diagonalizing
the Hamiltonian matrix corresponding to Eq. (17) in the
product basis of two harmonic oscillators of frequencies w;
and w,. The obtained energy levels were then used in Eq.
(16) in order to obtain the specific heat.

For the sake of distinctness, we chose w;=1 and w,=10.
The result of the numerical integration of the equations of
motion (18) illustrated in Fig. 2 indeed shows that the pres-
ence of nonlinearities in the interaction between individual
modes improves the precision of the proposed Langevin ap-
proach with color noise. To be more precise, for an interac-

i=1,2,
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FIG. 3. (Color online) Temperature dependence of the heat ca-
pacity for (a) the one-dimensional FPU-8 model and (b) the ¢*
model, obtained from the first-order variational method (curves 1
and 3) and the Langevin equation with color noise (curves 2 and 4).

tion strength of B=1, the temperature dependence of c(7)
agrees better than the noninteracting case =0 with the re-
sult obtained from quantum-statistical mechanics.

We also computed the heat capacity of the previous mod-
els according to the spectral density equation (38) that we
introduce below. One can see in Figs. 1 and 2 that the result
obtained in this way closely follows the exact quantum-
mechanical result.

We have so far considered only small molecular systems.
In order to check the efficiency of the generalized Langevin
method for many-body systems, we will now discuss the
calculation of the specific heat for the one-dimensional (1D)
Fermi-Pasta-Ulam (FPU) model,

H= 2 —+ — 514 +— 5u , (19)
; 2m 2
and ¢* chain,
A
H= 2 oty 5 +];” 2+Zu? , (20)

where K=m=A=f,=1 for both models, du;=u;—u,;_; stands
for the interparticle distance, and the index i runs over oscil-
lators.

Figure 3 compares the specific heat of these Hamiltonian
chains computed with the generalized Langevin approach to
the one obtained from a first-order variational method. A
brief description of the variational calculation can be found
in the Appendix. The integration of the Langevin equations
with color noise was carried out in the same way as the
previous small nonlinear models. Both figures clearly show
for these highly nonlinear 1D models the sensitive agreement
between the Langevin approach and the statistical mechani-
cal calculation.
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These examples clearly show that the use of the Langevin
equation with color noise can be used as a reasonably accu-
rate tool to compute the specific heat of complex molecular
systems that are very difficult to study within the framework
of quantum-statistical mechanics. We will now present the
scheme for evaluating the temperature dependence of the
specific heat for general molecular systems by using a color
noise. Let us define the N-dimensional vector x={x,}"_|,
which denotes the spatial coordinates of the individual atoms
in the system. In terms of these coordinates, the generalized
Langevin equation describing the dynamics of the system
takes the form

Mk = — 0H/dx - TMx + =, (21)

E=(0-E),, (22)

where M is the mass matrix of the atoms, H is the Hamil-
tonian of the system, the dissipation coefficient is given by
['=1/t, (1, is the relaxation time), @={,}"_, is the vector of
normally distributed random forces obeying the normaliza-
tion conditions

(m(t) (t2)) = 2M kT 8,,,8(1) — 1),

and the temperature dependence of the correlation time ¢, is
still determined by the relation (11). The choice of character-
istic times for the integration of the generalized Langevin
equations requires some care. In fact, since the formula (11)
was obtained in the limit I'<<kzT/#, the numerical value of
the relaxation time should be large enough. It is thus crucial
that the fixed value of the relaxation time remains always
bigger than the correlation time of random forces in the con-
sidered temperature regime. On the other hand, very large
values of 7, are not suitable since it would require exceed-
ingly long integration times to drive the system to thermal
equilibrium. From a practical point of view, the numerical
value #,=1 ps is adequate since the result remains practically
invariant under the increase of this characteristic time.

The proposed scheme will be applied in the next section
to a Hamiltonian carbon nanotube model.

(23)

III. COMPUTATION OF THE HEAT CAPACITY OF
CARBON NANOTUBES

Carbon nanotubes have the peculiarity of behaving as
quasi-one-dimensional systems. This characteristic allows us
to compute the specific heat of these structures using
quantum-statistical tools, and this is what we will exploit in
this section in order to check the efficiency of our modified
Langevin approach on a concrete molecular system.
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n-1,1-1,1

n+1,1-2,1

FIG. 4. (Color online) Schematic representation of a carbon
nanotube with chirality (m,m) and numbering of atoms in the struc-
ture. Thick red lines mark valent bond couplings, thin red arcs mark
valent angle couplings, and thin dashed lines show the foundation
of two pyramids that form dihedral angles along the valent bonds in
the elementary cell (n,1). For this figure, we chose m=6.

For the sake of simplicity, we will limit ourselves to the
case of a nanotube with index of chirality (m,m). The struc-
ture of a carbon nanotube (CNT) with chirality (m,m) (arm-
chair structure) is shown schematically in Fig. 4. The nano-
tube is characterized by its radius R, the angle shift ¢, and
the longitudinal step /. The system consists of parallel trans-
versal layers of atoms. In each layer, the nanotube has 2m
atoms, which form m elementary cells separated by the an-
gular distance A¢p=27/m, so that i defines the alternating
longitudinal distances between the transverse layers. Each
atom of the CNT can be characterized by three indices
(n,l,k), where (n,l) defines an elementary cell (n
=0,*1,...,1=1,2,...,m), and k is the atom number in the
cell, k=0,1 (see Fig. 4).

The Hamiltonian of the lattice of carbon atoms shown in
Fig. 4 can be written in the following general form:

H=2§

n =1

oo o
SM o+, ) + Py [ (24)

where M is the mass of a carbon atom, M=12X1.6603
X107 kg, W, =0 (1) Y k(1) 2 i (D) is the
radius-vector that defines the position of the carbon atom
(n,l,k) at the moment ¢ and the term 7P,
= P(W1 1,15 Wpe 1 141,05 Wi 1,05 W1 W1 =1, 1> Upg1 0) - denotes
the total potential energy given by a sum of three different
types of potentials,

Pri= VW, 0.0, 11) + V@, 141,0:W00) + VW, 10,00 10) + U,y 00,5000, 0) + U oy 1,00, 1)

+ U 115 W 1,00 Wr1 1,1) + U 0,0, 11501 111 0) + U0, 10,0, 11, W41 10) + U021 141,000 115 W01 10)

+ Wy, 115,10, W 1 115 Wt gm1,1) + W, 15, 0, W o1 15 Wy 1) + Wy 15U, 70,8y 15 Wy 1o 1)

+ W(un,l,O’un,l,l’un—l,l+1,03un+1,l,0) + W(un,l,O’un,l,l’un+1,l,0’un—l,l+l,0) + W(un—l,l+l,0’un,l,19un,l,03un+1,l,0)~

(25)
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The first three terms describe a change of the deformation
energy due to a direct interaction between pairs of atoms
with coordinates u; and u,, characterized by the potential
V(u,,u,). The next six terms describe the deformation en-
ergy of the angle between the links u;u, and u,us;, taken into
account the potential U(u;,u,,us). Finally, the next six terms
describe the deformation energy associated with a change of
the effective angle between the planes u;u,u; and u,usuy,
characterized by the potential W(u,,u,,us,u,).

In our numerical simulations, we employ the interaction
potentials frequently used in modeling the dynamics of poly-
mer macromolecules [4—6],

V(u,,u,) = D{exp[— a(p — py)] - 1}, (26)

where p=|u,—u,|, D=4.9632 €V is the energy of the valent

coupling, and py=1.418 A is the static length of valent bond;

U(uy,up,u3) = €,(cos ¢ - cos ¢p)°, (27)
where
cos @ = (u3 = up,u; —uy)(juz —uy - [u, —wy )7,
and cos ¢py=cos(27/3)=—1/2. Finally,

W, up,us,uy) = €[1-(vi,vo)([vy| - [vo))7'], (28)

where v;=(u,—u;) X (uz—u,) and v,=(uz—u,) X (uy—u;).
The model parameters such as a=1.7889 A~ ¢,
=1.3143 eV, and €,=0.499 eV are obtained from the phonon
frequency spectrum of a planar lattice of carbon atoms [7,8].
Equilibrium structure of the nanotube with index (m,m)
can be characterized by three parameters: its radius R, the
angle shift ¢, and the longitudinal step 4. Equilibrium posi-
tions of the atoms in the tube are given by the coordinates

X o=hn=1), x), =h(n-1),
)’2,1,0 =R COS(¢n,1), yg,l,l =R COS(d’n,z +¢),

Z2,1,0 =Rsin(¢, ), Z2,1,1 =R sin(¢,;+ ¢), (29)

with cylindrical angles ¢, ;=[/—1+(n—1)/2]A¢ and the an-
gular distance A¢=27/m. In order to find the parameters R,
¢, and h, we need to solve the minimization problem

0 0 0 0 0 .
P(un—l,l,l’un—l,l+l,0’un,l,0’un,l,17un+1,l—l,l’un+l,l,0) - 1remr;1,’
» @,

where we have introduced the notations ug’,’i
=(x2,l,,.,y2,,y,,,z2,,,,.) and =0, 1. The resulting value of the en-
ergy is then used as the minimum value. For a nanotube of
the (6,6) type, we find a radius R=4.1782 A and a longitu-
dinal step ~2=1.2590 A, while for a nanotube of the (12,12)
type, one obtains R=8.3230 A and h=1.2560 A.

If one wishes to study small-amplitude vibrations, it is
more convenient to switch to local cylindrical coordinates
Up1k> Uniio Wk defined by

_ 0
XLk = X 1k T Un,i >

) -0 0
Vb= Ynik = Unie SN &y 4+ W11 COS &y hs
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) 0 .0
Zn 1k = Zp g T Unik €OS Py o+ Wiy 14 SIN By s (30)

with the angle ¢, ;o=[/-1+(n—1)/2]A¢ and @,; =0
+ ¢. In this coordinate system, the Hamiltonian of the carbon
nanotube takes the form

m
1 . .
H= E E {EM(Xn,l’Xn,l)
n I=1
+P(Xn—1,1§Xn—1,1+1§Xn,1§Xn+1,z—1§Xn+1,z)}, (31)

where the six-dimensional vector X,
=(Up1.0>Vn1.0>Wn1.00Un11:Unt1-Wn.1) describes in local coor-
dinates the shifting of the atoms located in the cell n,/ from
their equilibrium position.

The equations of motion for the Hamiltonian (31) are
given by

- Min,l =- Fn,l
= Py (%130 1413 X041 15 X042, 113 X042,1)
+ sz(xn,]—l ;Xn,l;xn+l,l—l ;Xn+2,l—2;xn+2,l—l)
+ Px3(xn—1,l;xn—l,l+l ;Xn,l;xn+l,l—1 ;Xn+1,/)
+ Py (X2.1413%0-2.1523 X0 11415 X015 X 11)
+ Py (X0 3% 20013 % 15X o130 ), (32)

with the function Pxi=£P(x1,x2,x3,x4,X5), i=1,2,...,5.
In the linear approximation, the previous set of equations
takes the form

- Mx, ;=B X, ;+BX,.1+ B:Xn—l,l +B3X, 0+ B;kxn—ll
+ ByX,, 41 + Bjxn,l—l +BsX o1+ B;kxn—l,lﬂ
+ BeXya2 11+ ByX,o 141 + BrXpso 0+ BIX, 0 140,
(33)
where the matrix coefficients are defined as

B =lex1 +Px2x2+Px3x3+Px4x4+Px5x5’

B, = Px1x3 +Px3x55 B; =lex5v

B,= lex2 + Px4x57 Bs= szx3 + Px3x4’

Bé=Px1x4+Px2X55 B;=P

X2X4’
with the matrix of partial derivatives

_ PP
X ox,0x

P (0,0,0,0,0), i,j=1,2,3,4,5.
The solution of the linearized equations (33) can be found in

terms of plane waves in the form
X, =Ae exp(ign +ilS¢p— iwt), (34)

where A stands for the amplitude of the wave, e is the unit
vector of the amplitude, g € [0, 77] is the dimensionless wave
number, and §=2mj/m (j=0,1,...,m—1) is the dimension-
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FIG. 5. (Color online) (a) Spectral density of thermal oscilla-
tions of armchair (6, 6) carbon nanotube for 7=300 K (red field
corresponds to system equations with color noise) and (b) 60 dis-
persion curves of the phonon modes. Gray marks the frequency
region w<kpT/h.

less orbital moment of the phonon. By injecting the expres-
sion (34) into the linear equation system (33), we obtain the
eigenvalue problem

. % _: . % _n: .
Mw*A =[B) + Bye" + Bje™ + Bye* " + B e > + Bye"
% _: . % i o
+B4€ 15+Bsetq 15+Bse tq+l§+BGeth i

% _oiies . % _9inan:
+B6€ 21q+15+B7621q 215+B7e 21q+216]A. (35)

Thus, the calculation of the dispersion curves of the carbon
nanotube requires the computation of the eigenvalues of the
Hermitian matrix of dimension 6 X 6 (35) at each value of
the wave number 0<¢g< and the moment 8=2mj/m (j
=0,1,...,m—1). The dispersion curves obtained in this way
consists of 6m branches [see Fig. 5(b)].

The computation of the eigenvalues (35) yields not only
all the dispersion curves w(g) but also the spectral density
p(w), normalized according to [p(w)dw=1.

A simple method for obtaining the temperature depen-
dence of the spectral density consists in making a simulation
of the thermal vibrations of the carbon nanotube. To this aim,
the system is first driven to thermal equilibrium using the

usual Langevin equations with white noise
Mx,,=F,,-TMx,,+E, . (36)

with the dissipation coefficient I'=1/1,, 7, is the relaxation
time of atoms (it is reasonable to take #,=0.1 ps), and &,
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=(&,015--->&u16) s the six-dimensional vector correspond-
ing to the normally distributed random noises, describing the
interaction of the particles located in the cell (n,l) with the
thermal bath. The characteristic correlation functions of these
noises can be written as

(Euni(t) €1 f(12)) = 2MkpT 6,646, 0(t, — 1),

where kp is the Boltzmann constant and 7 is the temperature
of the thermostat. After having set the initial coordinates (29)
and velocities to zero, the numerical integration of the sys-
tem of Langevin equations was performed over #=20¢,.

Once the system evolves into thermal equilibrium, we
used the thermalized states {x,,;,X, ;} obtained in this way as
initial conditions for the evolution of the isolated system
defined by the equations of motion

(37)

MXn,l = Fn,l .

The numerical integration of this set of equations yields the
time dependence of the particle velocity X, ,(r). By Fourier-
transforming this particle velocity (for numerical evalua-
tions, it is convenient to use fast Fourier transformation), one
finally obtains the spectral density of vibrations p(w) of the
particles in the system. In order to increase the accuracy of
the result, the spectral density was obtained from 100 inde-
pendent thermalization processes and averaged over the at-
oms of the system.

The spectral density profile obtained at 7=300 K is
shown in Fig. 5(a). We notice that at this temperature, the
density profile is in good agreement with the shape of the
dispersion curves, which can be seen as a weak manifestation
of nonlinearity effects. If one assumes that the proper vibra-
tional modes of the carbon nanotube remain linear, then the
specific heat of the nanotube can be deduced from the inte-
gral

c(T):J c(w)p(w)do,

0

ho \?
cq(w) = (leT)

exp(hw/kgT)
[exp(hw/kyT) - 11*

(38)

where ¢ (w) is the dimensionless thermal capacity of
phonons with angular frequency w. This computation
method based on the spectral density summation was first
used to compute the heat capacity of carbon nanotubes in
Refs. [9,10].

This approach is remarkably practical since the specific
heat of the system follows from the simple knowledge of the
spectral density p(w) of thermal vibrations. On the other
hand, the spectral density can be deduced from the shape of
the spectral curves, that is, by considering the latter as the
frequency spectrum of the harmonic modes in the nanotube.
The heat capacity c¢(T) of the carbon nanotube with index
(6,6), (12,12), and (10,0) obtained in this way is shown in
Fig. 6. It is clearly seen in this figure that the specific heat is
practically insensitive to the index of the nanotube. Further-
more, the temperature dependence of the specific heat is lin-
ear in the regime 0<<7<400 K. This temperature behavior
of the specific heat is in concordance with previous theoret-
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FIG. 6. (Color online) Temperature dependence of specific heat
¢ of carbon nanotube (6,6), (12,12), and (10,0). Blue line (curve 1)
corresponds to the result obtained with the use of the frequency
density of linear phonon waves while markers were obtained from
the frequency density of thermal vibrations. Red line (curve 2) cor-
responds to the result obtained from the numerical integration of
Langevin equations with color noise.

ical works [9,10] and confirms the experimental measures of
the specific heat of titanium dioxide nanotubes [11].

We can equally obtain the spectral density that appears in
Eq. (38) directly from dynamical simulations, i.e., by follow-
ing thermal vibrations of atoms in the carbon nanotube at
finite temperature 7> 0. As it can be checked in Fig. 6, nu-
merical simulations show that these two approaches yield
almost the same result (the spectral density has a weak tem-
perature dependence).

Let us note that the numerical integration of the Langevin
equations with white noise (36) that allows us to obtain the
dimensionless specific heat of the nanotube (m,0) from the
equation c(T)=(d{H)/dT)/(6Nmkg), where Nh is the length
of the nanotube, shows that the heat capacity is practically
independent of the temperature, that is, c=1 over 0<T
<400 K (this behavior follows from the well-known equi-
partition theorem of classical statistical mechanics, which
states that the mean energy of each degree of freedom is
equal to kzT). But the situation drastically changes if one
replaces the white noise of the Langevin equation with a
time-correlated color noise whose temperature dependence is
given by the formula (11). In this case, thermal vibrations of
the nanotube are described by the system of Langevin equa-
tions,

Min,l = Fn,l - 1—‘M).(n,l + En,l’ (39)

E.n,l = (®n,l - En,l)/tcs (40)

where O, ,=(7,,1,..., 7.6 18 the six-dimensional vector
corresponding to the normally distributed random noise and
normalized according to Eq. (37), the relaxation time 7,
=1ps, and the correlation time of random noises ¢,
_ﬁ\e 2/ kBT

The numerical integration of the equations of motion (39)
and (40) first yields the mean energy of the nanotube E
=(H) versus temperature T. Then the specific heat is deduced
from the relation ¢(T)=dE/dT. The result is illustrated in
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Fig. 6. First of all, it is clearly seen that the specific heat of
nanotubes (6,6), (12,12), and (10,0) has practically the same
temperature behavior, that is, it tends to zero for 7— 0 and it
rises regularly with the increase of the temperature. Further-
more, the specific heat calculated with color noise coincides
very well with the one obtained from Eq. (38) via computa-
tion of the spectral density.

We show in Fig. 5(a) the shape of the spectral density of
thermal vibrations of the carbon nanotube, obtained with
color noise. We can note that only low-frequency vibrations
characterized by w<<kgT/# are totally thermalized while the
thermalization of high-frequency modes is partial. Moreover,
the degree of thermalization decreases with increasing tem-
perature.

IV. COMPUTATION OF THE HEAT CAPACITY OF
POLYETHYLENE MACROMOLECULES

By considering the concrete example of carbon nano-
tubes, we have shown that the use of the Langevin equations
with color noise (39) and (40) allows us to realize the quan-
tum effect of partial thermalization of high-frequency modes
and yields the correct temperature behavior of the specific
heat for complex molecular systems. The proposed method
becomes very useful, especially for molecular systems with
complex configurational dynamics, for example in the case
of macromolecules that possess globular structure, or simply
when one deals with a highly nonlinear dynamics and it be-
comes meaningless to consider the existence of a spectral
density of linear small-amplitude vibrations.

Let us prove the efficiency of the method by considering a
further example, that is, the polyethylene macromolecule
(CH,) 900 We will use a united atom model where the hy-
drogen atoms are lumped onto the carbon atoms to which
they are attached.

Let the vector u,=(x,,y,,z,) be the coordinate of the nth
carbon atom of the polyethylene molecule (PE) and n
=1,2,...,N, where N is the total number of carbon atoms.
Thus the Hamiltonian of the macromolecule takes the form

N 1 N-1 N=2
E 5 (l‘ln’l.l )+ E V(un’un+l) + E U(un9un+19un+2)
n=1 n=1 n=1
N-3 N-4 N
2 W(un7un+17 u,.o,u n+3) + E E P umuk) (41)
n=1 n=1 k=n+4

The first summation in this expression corresponds to the
kinetic energy of the macromolecule, and M=14m, is the
mass of the atom groups CH,, where m,=1.6603
X 10727 kg is the mass of a proton. The second term gives
the deformation energy of covalent bonds, the third term is
the energetic cost corresponding to the change of covalent
angles, the forth term is the energy for the variation of tor-
sional angles, and the final term is the energy of Van der
Waals interactions.

Following the work [14], let us model the covalent bonds
CH,-CH, with the potential
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1
V(un7un+1) = EK(rn - rO)Z’ (42)
where r,=|u,,;—u,| is the length of the nth covalent bond,
ro=1.53 A is the equilibrium length of covalent bonds, and
K=700 kcal/mol A2 is the stiffness of the links. The poten-
tial of the covalent angle CH,-CH,-CH, is given by

U(u,,u,,1,1,,,) = €4(cos 6, — cos 6,), (43)
where the cosine function for the angle of the nth covalent
angle
COS(@n) = (un+1 — U, W0 — l-ln+1)/rnrn+l >

the equilibrium value of the angle 6,=109°, and the energy
€9=67.114 kcal/mol. The potential energy of the torsional
angle can be expressed as

W(un7un+l?un+27un+3) =€~ € COS(¢n) ) COS(2¢n)

— €& cos(3¢,),

where the characteristic energies are €;=0.81 kcal/mol, ¢,
=-0.43 kcal/mol, e;=1.62 kcal/mol, €;=€,+¢€,+¢€;, and fi-
nally ¢, is the angle between the vectors (u,,;—u,) X (0,
~u,,1) and (W,,—1,,) X (W,,3-1,,,). The Van der Waals
potential is given by

P(u,,wy) =4e [ (o/r,)"% = (o/r,)°],

(44)

(45)

where r,;=|u;—u,| is the distance between the nth and kth
carbon atoms, the interaction energy € ;=0.112 kcal/mol,
and 0=4.01 A. In order to reduce the computational time,
we truncate the Van der Waals potential at the distance
100 A. These potentials were parametrized using experimen-
tal data and quantum calculations on short alkanes and have
been shown to provide an accurate description of polyethyl-
ene melts [14-16].

Thermal fluctuations of the macromolecule can be de-
scribed within the framework of the classical mechanics by
using Langevin equations with white noise,

. oH .
Mii, = - P -I'Ma,+0,,

n

n=1,2,...,N, (46)

with the dissipation coefficient I'=1/¢, and 6,
=(6,.1,6,,.06,5) is the three-dimensional vector correspond-
ing to the normally distributed random noises, describing the
interaction of the nth carbon atom with the thermal bath. The
characteristic correlation functions of these noises are given
by

(6,111 0. j(12)) = 2MkgT 5,,.6,;8(t, = 1,). (47)

The planar transzigzag conformation of the polyethylene
macromolecule

Up =nly,  Uyo=(=1)"1/2, wu,3=0,

i,;=0, n=12,...,N, i=12,3 (48)

was chosen as initial conditions, where [, =r, sin(6,/2) and
l,=rcos(fy/2) are longitudinal and transversal steps of the
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FIG. 7. Ball conformation of a single chain (CH,)n for (a)
temperature 7=0 and (b) 7=300 K.

transzigzag chain. We should note that the transzigzag con-
figuration (48) will be the ground state of the macromolecule
only if we fix its ends, that is, if we impose u; =0, uy=0. In
this case, the macromolecule will always keep its linear tran-
szigzag form. On the other hand, the macromolecule with
free ends will return to its ball configuration since this state
is energetically more favorable in the sense that it allows the
molecule to form more nonvalent interatomic bonds.

The numerical integration of the equations of motion (46)
with initial conditions (48) showed that for 7,=1 ps and at
temperature 7=300 K, the macromolecule PE which consists
of N=1000 units returns to its ball configuration in
2 ns—see Fig. 7(b). By further integrating the equations of
motion at absolute zero temperature 7=0, one obtains the
ground-state ball conformation of the macromolecule—see
Fig. 7(a). It is clearly seen that at room temperature T
=300 K, the globular shape of the PE macromolecule be-
comes more irregular.

In order to find the spectral density of thermal fluctuations
of the macromolecule by using Langevin equations (46), we
first obtain the initial conditions of the system corresponding
to the thermalized state of the macromolecule. This is done
by numerically integrating the equations of motion over ¢
=20¢,. In the case of the boundary conditions with fixed
ends, we should use the initial conditions (47) corresponding
to the plane transzigzag configuration, and if one instead
considers free boundary conditions, one should use as initial
conditions the ball configuration of the macromolecule. The
next step consists in decoupling the thermalized chain from
the bath and calculating the spectral density p(w) of the ki-
netic energy distribution of the carbon atoms by following
the real-time dynamics of the isolated system. In order to
increase the accuracy of the result, the spectral density was
obtained from 200 independent thermalization processes and
averaged over all atoms of the chain.

The spectral density profile of linear transzigzag and ball
conformations of the single PE macromolecule is shown in
Fig. 8. One can notice that the frequency spectrum of the
transzigzag configuration consists of two zones. The first
low-frequency regime defined by 0<w=473 cm™! corre-
sponds to the planar acoustic fluctuations and nonplanar tor-
sional vibrations of the zigzag structure. The second zone
which covers the high-frequency regime 1037w
<1251 cm™! corresponds to the planar optical vibrations of
the zigzag. A detailed description of linear vibrations of the
zigzag structure was given in Refs. [17-20]. By inspecting
Fig. 8(a), one can notice that at T=1 K, thermal fluctuations
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FIG. 8. (Color online) Spectral density of thermal vibrations of
the (a) transzigzag and (b) ball conformation of the single polyeth-
ylene macromolecule (CH,)og0. The thin curve on the top of the
gray region gives the density at low temperature, 7=1 K, and the
bold curve gives the density at room temperature, 7=300 K.

of the transzigzag with fixed ends are mainly linear and the
density of the frequency spectrum indicates a marked singu-
lar behavior at the boundary of the zone corresponding to
linear vibrations. With the increase of the temperature from
0 to 300 K, a weak change of the spectral density, that is, an
insignificant broadening of the optical zone, takes place. The
spectral density of thermal fluctuations of the ball configura-
tion PE is illustrated in Fig. 8(b). The spectral density is once
again composed of two zones, a low-frequency acoustic zone
0<w<=>518cm™ and a high-frequency optical zone 962
<w=1266 cm™'. The more pronounced width of these
zones is due to the irregularity of the ball configuration. This
figure undoubtedly shows that the spectral density is practi-
cally insensitive to the increase of the temperature from
1 to 300 K.

With the knowledge of the spectral density of thermal
fluctuations p(w) and using Eq. (38), we are now able to
calculate the temperature dependence of the dimensionless
specific heat. Let us recall that the formula (38) remains
valid only if one deals with linear vibrations of the molecular
system. The heat capacity ¢(7) of the PE macromolecule
obtained in this way is shown in Fig. 9 (markers 1 and 2).
These two plots show that within the physically acceptable
interval 30=<7=340 K, the computational method yields al-
most the same trend for the specific heat of the ball and
zigzag configurations.

We will now show that the situation changes significantly
if one computes the specific heat ¢(7) by using Langevin
equations with color noise,

JH
Mii,=- — —TMu, + 5, (49)
au

n
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FIG. 9. (Color online) Temperature dependence of the dimen-
sionless specific heat ¢ of the macromolecule (CH,),op. Markers 1
and 2 correspond to the heat capacity of transzigzag and ball con-
formations of the macromolecule, respectively. These results were
obtained with the use of the frequency density of thermal vibra-
tions. Blue line 3 and red line 4 correspond to the heat capacity of
transzigzag and ball conformations. These results were obtained
with the use of Langevin equations with color noise. Green curve 5
corresponds to the heat capacity of the ball conformation. This re-
sult was obtained from classical Langevin equations with white
noise.

Il

n= (®n - En)/tc’ (50)

where ©,, is the three-dimensional vector corresponding to
the normally distributed random noise satisfying the correla-
tion functions (47), the relaxation time #,=1 ps, and the cor-
relation time of random noises, t,=7i\e—2/kgT. The numeri-
cal integration of the Langevin equations with color noise
(49) and (50) allows us to obtain the dimensionless specific

heat of the PE macromolecule from the equation

1 d{H)

3Nkg dT ’

c(T) =

where N=1000 is the total number of carbon atoms in the
macromolecule.

By inspecting the curve 3 and the markers 1 of Fig. 9, one
can observe that the specific heat of the linear macromol-
ecule with fixed ends (transzigzag conformation) calculated
with generalized Langevin equations (49) and (50) agrees
very well with the result obtained from the spectral density
formula (38). One thus recovers here the same concordance
between both methods as in the case of the carbon-nanotube
example. We should also note that in the considered tempera-
ture regime, the nonlinearity of the Hamiltonian has a weak
contribution and the dynamics is essentially linear. This as-
pect explains the good agreement between the proposed
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method and the spectral density formula and the validity of
the latter for the calculation of the specific heat.

If one now considers the macromolecule with free ends
(ball conformation), both computational methods still yield a
similar result for temperatures 7<<210 K. On the other hand,
a significant discrepancy between these approaches takes
place for 7>210 K—see Fig. 9, marker 2 and curve 4. The
disagreement results from a quite fast increase of the specific
heat, computed using Langevin equations with color noise,
with the increase of the temperature above this threshold.

To understand this effect, let us consider the temperature
dependence of the specific heat within the framework of
classical mechanics. One should use in this case Langevin
equation with white noise (46). At low temperatures, the spe-
cific heat of the ball is practically constant, that is, c=1 for
0=T<200 K, while for T>200 K, the specific heat rises
steadily—see Fig. 9, curve 5. This sharp increase is indeed
due to the melting phase transition of the ball structure. The
ball conformation remains stable due to weak Wan del Waals
interactions, whose strength sharply decreases with increas-
ing temperature. For 7<<200 K, the ball possesses a compact
and regular structure [see Fig. 7(a)], while at 7>200 K it
becomes more mobile and irregular [see Fig. 7(b)]. In other
words, at low temperatures the ball conformation is frozen,
and at high temperatures it behaves as a liquid. The sharp
increase of the specific heat is thus related with the transition
of the ball structure from solid to liquid state.

We have seen that the dynamics of the ball is highly non-
linear for 7>200 K and the approach that consists in com-
puting the heat capacity thorough the spectral density conse-
quently fails. This method is clearly not able to distinguish
the transition point of the ball structure, and the failure can
be qualitatively understood by noticing that the frequency
spectrum is practically unchanged at the transition—see Fig.
8(b). On the other hand, the proposed method of generalized
Langevin equations keeps working even above the critical
point (7>200 K) since it is able to reproduce the sharp in-
crease of the specific heat which accompanies the melting
phase transition of the ball structure—see Fig. 9, curves 4
and 5. Hence the generalized Langevin equation method
seems to be the most adequate approach if one wishes to
calculate the specific heat of the ball macromolecule PE in
the high-temperature regime 7>200 K.

Let us note that the case that we have considered above
concerns the majority of protein macromolecules. At room
temperature, these molecules manifest globular form with a
high mobility, which is a necessary condition for their bio-
logical functions. The importance of the proposed method
for practical applications in biophysics is thus clear.

It is of course imperative to identify the limitations of the
proposed method. The generalized Langevin equation ap-
proach is clearly not an exact method and simply aims at
providing an analogous modeling of the quantum partial
thermalization effect. Figures 1-3 provide some quantitative
insight about the limit of the generalized Langevin approach.
By comparing the plots of these figures, we notice that in the
presence of an intersite nonlinearity, the statistical method
and the Langevin method yield a reasonable agreement over
the whole temperature regime, see Fig. 2 and the top plot of
Fig. 3. On the other hand, in the presence of an on-site non-
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linearity, the Langevin method slightly overestimates the
specific heat in the high-temperature regime, while the agree-
ment in the quantum regime 7'<<Tpg survives.

A further weakness of the method is its inability to repro-
duce the ground-state fluctuations of molecular systems. But
we should also note that the zero vibrations give significant
contributions to the specific heat exclusively at very low
temperatures, where it becomes meaningless to use the
Langevin equations with color noise. In this temperature re-
gime, it would be more reasonable to calculate the specific
heat through the spectral density formula (38). As we have
shown in the case of the carbon nanotube model and the
polyethylene macromolecule, generalized Langevin equa-
tions remain valid in the temperature range 30—350 K.

Moreover, we would like to emphasize that in the case of
the usual Langevin equations with white noise, the general-
ized equipartition theorem guarantees the convergence to-
ward an equilibrium state at which one can unambiguously
define a mean energy and specific heat. If one instead con-
siders a correlated color noise, the equipartition theorem
does not hold and the definition of an equilibrium state is
more ambiguous. In this case, one can indeed obtain a ther-
mal equilibrium configuration only if the color noise is ap-
plied to all components of the system with the same ampli-
tude.

Finally, the use of Langevin equations with color noise
may lead in specific situations to the directional motion of
the system—the so-called ratchet dynamics. Some symmetry
breaking is of course necessary for the apparition of the
ratchet effect (see, for example, [12,13]). It is clear that iso-
lated macromolecules cannot undergo a directional dynam-
ics. The existence of this kind of dynamics for example,
would, require the existence of an asymmetric substrate. On
the other hand, even if there exists in the system some
ratchet tendency, it would manifest itself in the long-time
limit and give a very small contribution to the specific heat.

There already exists some quantum-mechanical algo-
rithms to evaluate thermal equilibrium averages: to name but
a few, the path-integral Monte Carlo approach and the quan-
tum Langevin equation method. The former approach con-
sists in discretizing space and time variables of the Euclidean
action [21,22]. The d-dimensional quantum partition func-
tion is recast in this way into a (d+ 1)-dimensional classical
partition function. When one deals with a nonlinear N-body
system, the evaluation of the  corresponding
(d+1)-dimensional effective partition function is very com-
plicated even in the case d=1 since the numerical transfer-
matrix method can be applied exclusively to one-
dimensional Hamiltonians. One thus has to run Monte Carlo
simulations in order to calculate the (d+ 1)-dimensional ef-
fective partition function. It is clear in this case that the in-
crease of the spatial dimension by 1 multiplies the simulation
time by the Trotter number, which should be large enough to
obtain a reliable result. On the other hand, the additional
numerical cost of the generalized Langevin method com-
pared to classical Langevin simulations is obviously irrel-
evant since the approximative consideration of the quantum
mechanics in the proposed approach simply consists in intro-
ducing a single additional degree of freedom. A numerically
tractable formulation of the quantum Langevin equation
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method was recently proposed in Ref. [23] in the context of
the heat conduction problem. The method consists in inte-
grating the quantum Langevin equations over the bath de-
grees of freedom, which leads to reduced equations describ-
ing only the evolution of the subsystem. Since the oscillator
chain is connected to the external heat baths only at its ex-
tremities, the numerical integration of the reduced Langevin
equations becomes possible. If we instead assume that each
oscillator is connected to the external reservoir, as required if
one needs to compute thermal averages in the canonical en-
semble, the numerical cost of the algorithm would be highly
increased due to the matricial term corresponding to the in-
tegral of the memory function (self-energy matrix).

An absolute and precise comparison of the computational
speed of the proposed method with the speed of other quan-
tum algorithms is difficult, since this comparison will depend
strongly on the considered model. It is, however, clear that in
any case, the generalized Langevin method discussed in this
work is much faster. The discussion of the numerical effi-
ciency can be done by comparing the efficiency of classical
molecular dynamics and quantum molecular dynamics.
Quantum molecular dynamics is quite different from classi-
cal molecular dynamics, which is primarily concerned with
the classical motion of atoms interacting according to a given
potential. Quantum algorithms are based on the laws of
quantum mechanics, the fundamental equations that describe
electrons and phonons. The equations that should be solved
in quantum calculations are extraordinary complex. Model-
ing the behavior of molecules at the quantum level requires
unprecedented computational power and speed. The largest
systems that can deal with the current computational power
of massively parallel computers are Hamiltonian models
composed of a few hundred atoms and thousands of elec-
trons, while on the classical level, one can simulate the dy-
namics of Hamiltonian systems as large as 10° atoms.

V. CONCLUSIONS

We proposed a method for computing the temperature de-
pendence of the heat capacity in complex molecular systems.
The proposed scheme is based on the use of the Langevin
equation with low-frequency color noise. We showed that the
thermal behavior of the correlation time of random forces,
which is the key characteristic of the partial thermalization
effect, can be described by a linﬁr function of the inverse
bath temperature, that is, r,.=%ve—2/kpT. We next illustrated
nonlinearity effects by considering two simple Hamiltonian
models, and we explicitly showed that the generalized
Langevin approach can be used in the presence of anharmo-
nicities in the Hamiltonian. Then we used our approach to
calculate the specific heat of one-dimensional ¢* and FPU-3
models. By comparing the result with the one obtained from
the quantum self-consistent phonon method, we demon-
strated the validity of the generalized Langevin approach for
many-body systems. Finally, by applying the proposed pro-
cedure to carbon nanotubes and polyethylene macromol-
ecules, we showed that the consideration of the color noise in
the Langevin equation allows us to accurately reproduce the
temperature evolution of the specific heat in high-
dimensional complex systems.
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It is well known that for complex systems having strong
nonlinearity effects in the quantum regime (7<Tjg), there
exists a temperature gap unreachable by existing approxima-
tive approaches such as the spectral density equations (38),
while the drawback of quantum Monte-Carlo-Langevin
methods is the large numerical cost in the case of many
particle models. The proposed method may be very useful to
fill this gap, especially if one wishes to investigate the ther-
modynamics of realistic molecular systems with complex
configurational dynamics, for example in the case of macro-
molecules that possess globular structures with a highly non-
linear dynamics. Further investigation is of course necessary
to better understand the limitations of our method and also to
fix its potential applications, especially for nonequilibrium
issues such as the heat transport in complex lattice systems.
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APPENDIX A: THE SPECIFIC HEAT OF THE
OSCILLATOR CHAINS FROM THE FIRST-ORDER
VARIATIONAL APPROACH

In this appendix, we will give a brief presentation of the
calculation of the heat capacities for one-dimensional FPU-8
(14) and ¢* (17) models by using the first-order self-
consistent phonon theory (SCPT). A detailed description of
the derivation of the first-order free energy within the path-
integral approach will be given elsewhere [24].

In the path-integral representation of quantum-statistical
mechanics, the N-body partition function in the canonical
ensemble can be expressed as a path integral over close tra-
jectories,

Z= f Dxe S, (A1)

where

hB m
S= f d7<5x2+ U[x]) (A2)

0

is the Euclidean action. The idea of the SCPT thus consists in
approximating the original Euclidean action (A2) with a qua-
dratic trial action that allows an exact evaluation of the trace
(A1). The trial action is chosen in the form

Bh
S(): f dTHO
0

(A3)
with

N

m ., A\

Hy= 2 {Exi + Elxi + Noxp + gxkxk_l}. (A4)
k=1

The parameters of the trial Hamiltonian (A4) are to be fixed
by minimizing the first-order free energy according to the
Feynman-Jensen inequality,
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F<Fy+(H-H,). (A5)

The minimized free energy per particle of the FPU-8 model
takes the form

3\
fi=fo=" () (A6)
with
kgT
fo=- % InZ,,
sin(p7/N) (A7)

"Ll sinh(Bho,2)’

and the pseudophonon frequencies and the lattice displace-
ment are self-consistently calculated by solving the corre-
sponding equations,

" 4 gin?| —
(8% =—2

2Nm » oy

i
coth( P U”) ,
2
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mo, = fo+4(K + 3>\<5x2>)sin2(p§) . (A8)

The first-order free energy for ¢* model can be expressed as

fi=fo- —<x2)2, (A9)

where

kT
fo=- N InZ,,

N
E mh(ﬁﬁa 2)’ (A10)

and the self-consistent equations to be solved by iteration
read

&%= —2 o, coth('Bf; ),

2Nm

mo§=f0+3>\<x2>+41<sin2<%). (A11)

The specific heats follow from Egs. (A6) and (A9) according
to Eq. (16).
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